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Yes,

@® Al / Machine Learning / Deep Learning is reshaping every scientific discipline, including HEP
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“Deep learning era”

* Al4HEP progress is driven by both experimental needs and new computational methods
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But...

@® Inthe modern deep learning era,
a substantial gap has emerged between state-of-the-art Al techniques and their practical applications in HEP

3-9%-\ 3.2% /_3.4%

1.2% L : : . :

1.1%_->2. https://iml-wg.github.io/HEPML-LivingReview/

15% — A m Reviews = Classification
® Regression m Generative models
®m Anomaly detection ® Simulation-based inference
® Equivariant networks Decorrelation methods
= Foundation models, LLMs = Uncertainty quantification
® Formal theory & ML = Experimental results ‘

82 out of 2602 papers

» Experimental analyses account for only ~3% of modern AI4HEP publications
« Multivariate methods (e.g., BDT) still dominate ML applications in HEP experiments,

. . 1 1
which were invented 30 years ago and have only 500~ 1000000 of scale of modern Deep Neural Networks
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Why?

@ Many Al methods extend beyond current experimental needs
* Not targeting urgent experimental bottlenecks
* Or being too ambitious for near-term deployment

@ Reliability & robustness of Al methods are concerning
* Understanding & controlling the behavior of sophisticated DNNs
* Ensuring unbiased physics outcomes

@ Shortage of successful, real-world examples
- Demonstrating Al's capability in solving concrete physics problems
» Establishing workflows to address above concerns
* Gaining acceptance through peer-reviewed results within HEP community
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Our contributions

@ During my doctorial study, we collaborators developed 3 practical Al methods at BESIII:
* Neutral hadron reconstruction
* Charmed hadron tagging
* General signal identification

@® These methods enabled several important measurements of charmed hadron decays:
* First observation of the semi-leptonic decay A¥ — ne*v,
« BAM-632, Nature Commun. 16, 681 (2025)
- First observation of the hadronic weak decay Af - pr®
 BAM-774, Phys. Rev. D 111, L051101 (2025)
* Most stringent constraint on the radiative leptonic decay D* — ye*v,
« BAM-826, Chin. Phys. C 49, 083001 (2025)
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Neutral hadron reconstruction

primary Y
@® Long-lived neutral hadrons (n, K?) are important probes for physics at t-charm region %
» Participated in hyperon & charmed hadron decays, light hadron spectrum, exotic states, etc. ;
+ However, BESIII has no dedicated hadronic calorimeter /
* Detection mainly rely on EMC /“);T "Tf/i ¥
A N
%'\3 e_f'j "! e ‘I \\\ ~ R
7S\ f‘\w\
@ Direct reconstruction in EMC is very challenging /s \ \
« EMC's size & material prevent full deposition of hadronic showers
- Unknown momentum EM shower (T) vs. hadronic shower (J,)

* Limited position resolution
* Non-perfect particle identification
* Bias in Monte-Carlo simulation
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Study of AL - ne*v, (l)

-03 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
@ PhYSICS mOtlvatlon NRQMI Phys.IRev.D40I(1989) 295|5 I l I I
. + . . ROQM Phys. Rev. D 56 (1997) 348 .
* The sub-dominant A7 semi-leptonic decay has not yet been observed HQET  Phys.Rev. C 72 2008) 035201 .
. . . . . CcQM Phys. Rev. D 90 (2014) 114033 .
*  Numerous theoretical predictions remain to be experimentally tested RQM  Eur.Phys.J.C76 (2016) 28 .
SU@3) Phys. Rev. D 93 (2016) 056008 ——i
QCDSR J. Phys. G 44 (2017) 075006 2]
SU@3) JHEP 11 (2017) 147 ——t
. LFQM Chin. Phys. C 42 (2018) 093101 .
@ Experlmental challenge SU@)  Phys. Lett. B 792 (2019) 214 —
. ) . e MBM Phys. Rev. D, 101 (2020) 094017 .
+ Neutron & neutrino can't be both reconstructed with recoiling method LFCQM  Phys Rev. D 103 2020 054018
SU3) Phys. Lett. B 823 (2021) 136765 —
+ Need to suppress major background A¥ — A(nno)e+ve efficiently HBM  Phys. Rev.D 107 2023) 033008 ——
QCDSR  Phys. Rev. D 108 (2023) 074017 ———
« Conventional methods fail to find signal evidence LQCD  Pins Rev. D97 (2018 034511 —
Exp?
03 02 -01 0 0l 0z 0. ° 4 05 06

B(A:— ne*v,) (%)

Suspected 7°-induced showers,
but can also arise from neutron, charges tracks,
beam background, detector noise, etc.
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Study of AT — ne*v, (ll)

@® Neutron identification with deep learning -

- l
kNN indices

Linear

* Represent EMC showers as point cloud and process with Graph Neural Network (GNN) L

EdgeConv Block

k=16, C = (128, 128, 128)

2
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BatchNorm

X

. 2 2 RelU |
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o X. . .3 Linear |
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—R:LU—‘ 256, ReLU, Dropout = 0.1
)
€ij = MLP(Xi’ Xj) Xi = mean/ eij ( Aggregation | Fully C(:2nnected

\ RelU | /

@ Extensive use of data-driven techniques
* Study multiple control channels including J /4 - par~, pAK~, ¥*%~, 27 &%
* For GNN model calibration, physics results validation & systematic uncertainty quantification
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Study of A7 — ne*v, (lll)

Nature Commun. 16, 681 (2025)
@® Achieve first observation of A —» ne*v,

* Signal significance exceeds 100

* Precision capable to examine theoretical models
e e 14 e Selected as Editors’ nghllghts

Data Data . . .
120 ! : 120 i or : in Nature Communications
B A7 > nevy, B A - e,
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CcQM Phys. Rev. D 90 (2014) 114033 .
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QCDSR  J. Phys. G 44 (2017) 075006 o -
SU@3) JHEP 11 (2017) 147 ——t
LFQM  Chin, Phys. C 42(2018) 093101 e
SU(3) Phys. Lett. B 792 (2019) 214 ——t .
MBM Phys. Rev. D. 101 (2020) 094017 . Featured articles
4
LFCQM Phys. Rev. D 103 (2021) 054018 —_—— . . . S
Article Observation of a rare beta decay of the charmed baryon with a Graph Neural =
SU@3) Phys. Lett. B 823 (2021) 136765 —— Open Access Network ve
HBM Phys. Rev. D 107 (2023) 033008 —— I
v e ¢ ) 15 Jan 2025 The semileptonic decay channels of the Ac baryon can give important insights into weak interaction, but decay into a 5 1)
—— oot e
QCDSR  Phys. Rev. D 108 (2023) 074017 Nature Communications neutron, positron and electron neutrino has not been reported so far, due to difficulties in the final products’
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Charmed hadron tagging

@® Unique near-threshold pair-production at BESIII facilitates two tagging strategies
« Single-tag (ST): not constrain h decay in ete™ = hh
- Double-tag (DT): constrain h decay exclusively in ete™ = hh

@ Current DT method has efficiency bottleneck
« Cover 0(1) tag channels out of 0(100) total decay modes
« Only 15%~30% of hh events survive tag-side selection

6000 TFK*?('R"
Charmed hadron “__
Line at BESIII (fb~?) 20.3 20.3 g | T A
# of produced hh 7.2 x 107 5.6 x 107 6.5 x 10° 7.6 x 10° o | mew | T
N 1000 - + L
# of tag modes 6 9 15 12 E s0 ﬁ )/\’\
# of tagged hh 2.0 x 107 1.1 x 107 9.8 x 10° 1.2 x 105 S g0 T =5 o
Z 600f L L
Tagging efficiency 28% 19% 15% 16% S b i 1
Rl i o
15001 . S pKTf B prn’
Al can be used to recognize the decay topology of ete™ — hh, i ' kit
. . . T . . 500_ F F
leading to a new tagging method that constrains h decay inclusively ..__./L , _____,/\,. ]
226 228 23 232 226 2.28 23 232 226 228 23 232
My (GeV/c?)
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Study of A} — pr? (1)

6 4 2 0 2 4 6 8
° ° ° Phys. Rev. D 49 (1994) 3417 ! . l I I
@ PhYSICS mOtlvatlon Phys. Rev. D 55 (1997) 7067 .
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« BESII: B = (1.56%3:22) x 10™* with 3.7¢ evidence Phys. Rew: D97 (2018) 073006 4 —_
' Phys. Rev. D 97 (2018) 074028 : . )
» Controversial experimental inputs may mislead theoretical calculations Phys. Lett. B790(2019)225 | j—e—
Phys. Lett. B 794 (2019) 19 '_._|
Phys. Rev. D 101 (2020) 014011 I .
JHEP 02 (2020) 165 ._._|
@ Experimental Cha"enge Belle 2021 (upper limit) |—| \
. . —4 , L L JHEP 09 (2022) 035 fo—t
* Branching fraction around 1 x 10™* approaches BESIII's sensitivity limit JHEP 09 (2022) 035 i ,
« Neither ST nor DT vyields adequate signal significance BESHTL 2023 fevidence P \
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Study of A} — pr (ll)

@ Inclusive A} tagging with deep learning
* Feed all charge tracks & neutral showers to a Transformer model

 Learn to classify ete™ - At [- pr®])AZ [ anything] from backgrounds

* Use DNN classifier to suppress background after basic event reconstruction

@ Extensive use of data-driven techniques

- Study multiple control channels including A} — pn, pKdn°®, pK2n

* For DNN model calibration, physics results validation & uncertainty quantification
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Study of A — pr (1ll)

@ Achieve first observation of A; —» pr®
 Significance reaches 5.40
« Result is consistent with BESIII's evidence but exceeds Belle's upper limit

@® Method being widely applicated at BESIII
 Boost multiple A} studies including AY - pn', pr*n~n°, etc.

Phys. Rev. D 111, L051101 (2025)

ST: 2.60 DNN tagging: 5.40 DT: 3.70
500; ST I I 4—IDalta T 50:_ ooy —I+—|Da;a I i g]o ; ~4- Data
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S o A¢A; non-signal 7] % F --= AgA, non-signal ] 2 baC!(ground
2 300F 4+ Hadron BKG = ----'Hadron BKG o [ - AYA.background
S8 f 3 ] = [ \
] |4z iR IS |
£ 200F 3 8 . ~ | |
8 ] H ] Z L |
o r ] o ] =
© 100f- ] - ] e I f
T T | - EIN saasaidRIEEL a =S ALTNNNNINNY
0526228 23 23 23 226 228 23 232 234 2.2 2.25 2.3 2.35 2.4
M, /(GeVic?) M,./(GeVic?) 2y
° My (GeV/c?)
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compared with DT



General signal identification

Yangu Li

@ DNN classifier can provide a unified solution for signal-background discrimination

And has potential to surpass cut-based selection & BDT

@ A statistical interpretation

Signal & background events form two PDFs in a high-dimensional feature space
The upper limit of signal/BKG identification is the ratio of these PDFs (Neyman-Pearson Lemma)

Such optimal classifier yields minimum cross-entropy

DNN can approximate this optimal by minimizing cross-entropy loss on data samples in training

class 2

Probability density functions (PDF)
of signal & BKG classes

For arbitrary event X,

B Y SOV the best estimation is Prob(sig) _ p1(Xo)
> P‘I"Ob(BKG) pz(Xo)

>
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Study of D™ —» ye™v,(l)

@ Physics motivation Model LFQM [11] NRQM [12] RIQM [13] pQCD [14]
. < e . B(D* - yetv,) (x107°) 0.69 0.46 3.34 82+6.5
Radiative leptonic decays offer a clean probe of the SM Modei GCDF[15] GCDF [16] OCDETI0] BESIT[17]
-« BESIII's sensitivity is approaching theoretical predictions B(D* — ye've) (x107) | 2381 192 (1.881036, 231%0%) <30

@® Experimental challenge

» Huge contamination from D* semi-leptonic decays
* BFs about 100 x of signal

Hard to identify signal radiative photon from 7° & K-induced backgrounds

- ¢ Data
120 . Inc. MC: D" =%y,
[ I inc. Mc: D' =K (x'n0)e'v,

I ¢ Data
500~ Inc. MC: D'—nle*v,
L B inc. MC: D'—Ky(n'n%e'v,

C I inc. MC: D'>K e*v, 100 [ inc. MC: D'5K ey,
400 T Inc. MC: Other D* decays C Inc. MC: Other D' decays
[ @ inc. MC: Non - D decays 80 —_- Inc. MC: Non - D' decays

—— Sig. MC shape —— Sig. MC shape

Events/(10.0 MeV/c?)
Events/(10.0 MeV/c?)

300 C

C 60—

200 B

- Cut-based 40—

100 selection a0r

%2 o1 . 92
Uniss/(GeV) U,,.s/(GeV)
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Study of D* — ye™v, (ll)

Chin. Phys. C 49, 083001 (2025)
@® General signal identification with deep learning

Model B(x1079)
» Train a 3-classifier among signal, major background and other backgrounds Light front quark model [14] 0.69
» Background channel D* — % *v, also serves as control channel Non-relativistic quark model [13] 046
Relativistic quark model [16] 3.34
Perturbative QCD [17] 82+6.5
@ Provide most stringent upper limit on decay BF Lattice QCD [18] 0.09+0.04
T . . . CD factorizati 19 2.81
 Exclude most existing theoretical predictions QED factorization [19]
. . . QCD factorization [20] 1.92
A physics goal that can not be achieved with cut-based method QCD factorization [10] (188038, 231°059)
BESIIT 2017 [21] <3.0
DY = yetv,
, 2s This work <12
. o.‘a :i:re?igazﬁl I.‘r.l? 0:8 09 1
! i
g 1 t
% ' i
g : l . . e
1o | ™ : : ' Al method achieves ~3x signal sensitivity
o ' of cut-based method
umluf;GeV] 01 02 03 04 05 06 07 08 09 1 76.1 0

als
0 0.1 0.2
Score(r® BKG) U,../(GeV)
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Moving forward

@® Neutral hadron reconstruction bBetter performance
* Collaborate with Al experts to develop original architectures 3 —— .
o 6 F %
* Aim for full reconstruction of anti-neutron in EMC N // // 5
g 10 e >
¢ Position measurement precision improved by 920% 2PEL =
B/ g £
* Realize momentum measurement capability for the first time 13- // — vic 1
o — LMC —
- Well-calibrated on BESIII data using ~30 control channels i/ — concrtns
, . # 100 80 60 40 20 0 9427 04 06 08 1 12 14 0
See Yunxuan Song's talk in 2025 autumn workshop Effciency (%) P(GT) (GeVEe)

@ Charmed hadron tagging
* Extend Al method to study semi-leptonic decay dynamics
+ Applied to the first observation of Af - A(1405/1520)e*v,

Classification .
Regression
DNN

Basic event
) ) ce
See my talk in charm parallel session selection

* Develop software packages for broader BESIII use
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https://indico.ihep.ac.cn/event/26762/contributions/201058/attachments/95102/125177/BESIII_yunxuan_250926.pdf
https://indico.ihep.ac.cn/event/27549/timetable/?view=standard#77-observation-of-lambda_ctola

Summary

@® To pave the last mile of AI4HEP, it is essential to:
* Identify urgent experimental needs
*  Apply Al methods to real physics problems
» Ensure reliability and robustness throughout the workflow
» Establish a reproducible and community-accepted paradigm

@® Our team has demonstrated several successful examples:
 Neutral hadron reconstruction = first observation of AL - ne*v,
+ Charmed hadron tagging = first observation of A} — pr®
- General signal identification = most stringent constraint on Dt - ye*v,

* Further developments are underway

Thanl antion!
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